一,推本轮半径及最高以考迟疾。西人第谷测三月食,如第一食日躔鹑首宫七度三十五分四十七秒五十三微,月离星纪宫度分秒同,月行迟末限之初。第二食日躔寿星宫初度,月离降娄宫度同,月行迟初限将半。第三食日躔星纪宫二度五十四分零二秒四十九微,月离鹑首宫度分秒同,月行疾末限之初。第一食距第二食一千一百八十日二十二时一十四分零四秒,实行相距八十二度二十四分一十二秒零七微,平行相距八十度二十一分一十秒,自行相距三百零八度四十七分零七秒二十七微。第二食距第三食一千九百一十八日二十三时零五分五十七秒,实行相距九十二度五十四分零二秒四十九微,平行相距八十五度零二十五秒,自行相距二百三十一度一十二分五十二秒三十三微。用平三角形推得本轮半径为本天半径十万分之八千七百,又推得最高行度,计至崇祯元年首朔月过最高三十七度三十四分三十四秒,然泛以三月食推之,本轮半径之数不合,故设均轮。
一,立四轮之行以定迟疾。西人第谷徵诸实测,将本轮半径三分之,存其二为本轮半径,其一为均轮半径。本法仍之。定本轮心起本天冬至右旋为平行度,增一负均轮之圈。其半径为新本轮半径,加一次轮半径之数。其心同本轮之心。本轮负而行,不自行,移均轮心从最高左旋,行于此圈之周,为自行引数。第谷又将次轮设于地心,而增次均轮。本法易之,定次轮心行均轮周,从最近右旋为倍引数,其半径为本天半径千万分之二十一万七千。次均轮心行次轮周,起于朔望,从次轮最近地心点右旋,行太阴距太阳之倍度为倍离,其半径为本天半径千万分之一十一万七千五百。太阴行次均轮之周,从次均轮最下左旋,亦行倍离。如图甲为地心,即本天心,乙丙丁为本天之一弧,丙甲为半径,戊为半轮最高,癸为最卑,酉为负圈最高,丑为最卑,壬为均轮最远,辛为最近,寅为次轮最远,亥为最近,土为次均轮最上,木为最下,即均轮心在最高又当朔望之象。又图太阴在戌,是均轮既左旋,又当朔望之象。其得次轮、次均轮半径于上下弦,当自行三宫或九宫时累测之,得极大均数七度二十五分四十六秒。其切线一百三十万四千,内减本轮均轮□半径,馀半之,即次轮半径。于两弦及朔望之间,当自行三宫或九宫时累测之,均数常与推算不合,差至四十一分零二秒,依法求其半径,得次均轮半径。
图形尚无资料
一,以两月食定交周。顺治十三年十一月庚申望子正后十八时四十四分十五秒,月食十五分四十七秒,在黄道南,日缠星纪宫十度三十九分,在最卑后三度四十九分,月自行为三宫二十七度四十六分。康熙十三年十二月丙午望子正后三时二十三分二十六秒,月食十五分五十秒,在黄道南,日缠星纪宫二十一度五十二分,在最卑后十四度二十一分,月自行为三宫二十五度二十四分。相距中积二百二十三月。用西人依巴谷朔策定数五千四百五十八为一率,交终定数五千九百二十三为二率,二百二十三月为三率,得四率二百四十一又五千四百五十八分之五千四百五十一,为两次月食相距之交终数。又以两次月食相距中积六千五百八十五日零八时三十九分十秒,与每日太阴平行经度相乘,以交终数除之,得一百二十九万零八百一十二秒小馀八七九五九八,为每一交行度。与周天秒数相减,馀五千一百八十七秒小馀一二0四0二,为每一交退行度。又以交终数除两次月食相距中积日分,得二十七日二一二二三三,为交周日分。乃以交周日分除每一交退行度,得三分十秒三十七微,为两交每日退行度。与太阴每日平行相加,得十三度十三分四十五秒三十八微,为太阴每日距交行。因两次月自行差二度半,食分差三秒,故比依巴谷所定距交行差一微,仍用依巴谷所定数。
一,求黄白大距度及交均以定交行。于月离黄道鹑首宫初度,又在黄道北距交適足九十度时,俟至子午线上测之,得地平高度,减去赤道高及黄赤距纬度。一在朔望时,得大距四度五十八分三十秒;一在上下弦时,得大距五度一十七分三十秒,以之立法。如图甲为黄极,乙丙丁戊为黄道,用两距度相加折半,为黄白大距之中数,为半径如巳甲,作本轮如巳庚辛壬。又取两距度相减折半为半径如巳癸,作均轮如癸子丑寅。其心循本轮左旋,每日行三分十秒有馀。白道极循均轮,起最近,左旋,行倍离之度。行至癸,则大距为乙卯;行至丑,则大距为乙辰。行子丑寅之半交行疾,行寅癸子之半交行迟。
一,求地半径差如太阳。申昜春园测得太阴高六十二度四十分五十一秒四十三微,同时于广东广州府测得太阴高七十九度四十七分二十六秒一十二微,于时月自行三宫初度,月距日一百八十度,以之立法,用平三角形推得地半径与太阴在中距时距地心之比例,为一与五十六又百分之七十二。依此法于月自行初宫初度月距日九十度时测之,求得地半径与太阴在最高时距地心之比例,为一与六十一又百分之九十八。又于月自行六宫初度月距日九十度时测之,求得地半径与太阴在最卑时距地心之比例,为一与五十三又百分之七十一。复用平三角形逐度皆推得地半径差。
一,考隐见迟疾以辨朓朒。一验在春分前后各三宫,黄道斜升而正降,日入时月在地平上高,朔后疾见,在秋分前后各三宫,黄道正升而斜降,日入时月在地平上低,朔后迟见,晦前隐迟、隐早反是。一验距黄道北,见早隐迟,距黄道南反是。一验视行迟,隐见俱迟;视行早,隐见俱早。
交食立法之原:
一,求日月视径以定食分浅深。用正表、倒表,各取日中之影,求其高度。两高度之较以为太阳视径。数年精测,得太阳最高之径为二十九分五十九秒,最卑之径为三十一分零五秒。用墙为表,以其西界当正午线,人在表北,依不动之处,候太阴之西周切于正午线,看时辰表时刻;俟太阴体过完,其东周才离正午线,复看时辰表时刻;与前相减,变度以为太阴视径。数年精测,得太阴最高之径为三十一分四十七秒,最卑之径为三十三分四十二秒。
一,求地影半径以定光分。地半径与太阳太阴距地心既得比例,日月视径又得真数,太阳、太阴自高至卑视径地半径与太阳、太阴实径比例。日食,人在地面见与不见。月食,太阳照地背成黑影,太阳大而地小,故成锥形。太阳有高卑,故地影有长短广狭;太阴有高卑,故入影有浅深;皆可预推而以立法。地影半径常大于实测,康熙五十六年八月戊戌月食,其实引为二宫三度四十一分零三秒,距地心五十七地半径零百分之四十一。测得纬度在黄道北三十六分十八秒,月半径为十六分十秒,食分为二十三分三十秒,乃以黄纬求得白道纬为食甚,距纬与食分相加,内减月半径,馀四十三分四十六秒,为地影半径。若依推算,太阳在最高,太阴在中距,地影半径应得四十八分三十四秒,以实测之数率之,应得四十四分四十三秒,所差三分五十一秒。因验得太阳光芒溢于原体之外,能侵削地影。以实测比算,定太阳之光分为地半径之六倍又百分之三十七。如图甲为地心,戊己为地径,乙丁为太阳所照影,末当至于庚。辛壬为溢出光分侵削影,末渐次狭小,至于丑而已尽。图形尚无资料
五星行立法之原:
一,求土星平行度。古测定二万一千五百五十一日又十分日之三,距恆星之度分等,距太阳之远近又等。土星行次轮会日、冲日各五十七次。置中积日分为实,星行次轮周数五十七为法,除之得周率。乃以每周三百六十度为实,周率除之,为每日距太阳之行。与太阳每日平行相减,得土星每日平行。本法仍之。
一,用三次冲日求土星本轮、均轮半径及最高以定盈缩。明万历间,西人第谷测土星三次冲日。如第一次日躔娵訾宫一度零三分二十七秒,土星在鹑尾宫度分秒同;第二次日躔娵訾宫二十一度四十七分三十九秒,土星在鹑尾宫度分秒同;第三次日躔降娄宫一十六度五十一分二十八秒,土星在寿星宫度分秒同。第一次距第二次一万一千三百四十三日五时三十六分,其实行相距二十度四十四分十二秒,平行相距十九度五十九分五十四秒;第二次距第三次七百五十五日二十时三十一分,实行相距二十五度零三分四十九秒,平行相距二十五度十九分十六秒。用不同心圈取平三角形,推得两心差,为本天半径千万分之一百一十六万二千,析为本轮半径八十六万五千五百八十七,均轮半径二十九万六千四百一十三。又推得万历十八年最高在析木宫二十六度二十分二十七秒,每年最高行一分二十秒一十二微。本法仍之。“)